THE CHARTS PROVIDED BELOW ARE FOR GUIDANCE PURPOSES ONLY You should refer to the Ontario Building Code for current Regulations

TOTAL DAILY DESIGN FLOW RATES FOR RESIDENTIAL OCCUPANCY "Q"		Example of how to			
(Litres/Day)	determine daily design flow rate:				
Dwellings under 200 m ² (2150 ft ²)	L/Day				
(a) 1 bedroom	750	Using a 4 bedroom, 235 m ² home with			
(b) 2 bedrooms	1,100	22 fixture units. From Chart on left:			
(c) 3 bedrooms	1,600	4 bedroom home > 200 m ² <u>or</u> > 20			
(d) 4 bedrooms	2,000	fixture			
(e) 5 bedrooms	2,500	units = 2,000 L/day			
(f) Additional flow for		additional 35 m ² = 400 L/day			
(i) Each Bedroom over 5	500	OR			
(ii) (a) Each 10 m ² (or part thereof) over 200 m ² up to 400 m ^{2 (3)}	100	additional 2 fixture units = 100 L/day			
(b) Each 10 m ² (or part thereof) over 400 m ² up to 600 m ^{$2(3)$}	75	"Q" (total daily design flow rate)			
(c) Each 10 m ² (or part thereof) over $600m^{2(3)}$, or	50	= 2,400 litres/day			
(iii) Each fixture unit over 20 fixture units	50				

NOTES FOR TABLE 8.2.1.3.A.:

The occupant load shall be calculated using subsection 3.1.16. 1.

Where multiple calculations of sewage volume is permitted the calculation resulting the highest flow shall be used in determining the design daily 2. sanitary sewage flow.

Total finished area, excluding the area of the finished basement. 3.

APPROXIMATE SOIL PERCOLATION RATE "T" The following are estimated typical ranges of "T" times. Actual "T" times may vary significantly due to on-site soil conditions. Clean Med -Silty Gravely Silty Sands Sandy Silty Soil Type Ì Silty Clay Sands **Coarse Sand** Sandy Silts Clays Clays 3 6 8 10 16 20 25 29 33 38 44 50+ "T" (min/cm) 🖙 1

LEGEND: < (LESS THAN)

> (MORE THAN)

SIZING FORMULAS FOR COMPONENTS OF SEPTIC SYSTEMS BASED ON TOTAL DAILY DESIGN FLOW RATES						
Class 4 Filter Bed	If daily flow rate is < 3,000 L/day ÷ 75	Example using the total flow rate from above:				
(surface area of filter	If daily flow rate is > 3,000 L/day ÷ 50	Flow rate = 2,400 L/day (which is <3,000 L/day)				
medium in square	Min. area of filter medium = 10 m^2	/ A (area of bed) = 2,400 \div 75 = 32 m ²				
metres)	Max. area of filter medium = 50 m ²					
	(Over 50 m ² , requires 2 or more beds)					
Class 4 Trench Bed	Formula for conventional beds	Example using the total flow rate from above:				
(total length of	without secondary treatment units: L					
dist. pipe in metres)	= QT ÷ 200	Q = 2,400 L/day (flow rate from above)				
	where: L is total length of pipe	T = 6 min/cm (if using <u>"typical" med – coarse sand</u>)				
	Q is total daily design flow rate	L (total length of distribution pipe) = QT ÷ 200				
	T is soil percolation rate	/ L = (2,400 X 6 ÷ 200) = 72 metres				
	Minimum length of tile = 40 metres					
Septic Tank (litres)	Tank(s) must have a <u>minimum</u>	Example using the total flow rate from above of 2,400				
	working capacity of twice the daily	litres per day then the minimum tank size would be:				
	design flow rate for residential					
	occupancies.	/ Total Working Capacity 2 x 2,400 = 4,800 litres				
	Minimum tank size – 3,600 litres					

CLEARANCE DISTANCES FOR COMPONENTS OF SEWAGE SYSTEMS (metres)									
If the bed is raised,	Wells	Wells	Springs	Springs	Surface	Property	Dwellings/		
add 2 metres for every 1	(with 6 m	(with no	Potable	Not	Water	Lines	Structures		
metre of rise	of casing)	casing)		Potable	(lake, river, etc.)				
Class 4 Distribution Pipe	15	30		15	15	3	5.0		
Class 4 Septic Tank	15	15	15	15	15	3	1.5		
Class 5 Holding Tank	15	15	15	15		3	1.5		
Class 1 Privy	15	30	30	30	15	3			
Class 2 Grey – Water Pit	15	30	30	15	15	3			